ESE-830 Next-generation Photovoltaics 3 CHs

Course Description

Nowadays sustained, effective and rapid, mitigation of greenhouse gas is critical 1. to avoid dangerous climate change. In this scenario, photoelectric conversion - the direct conversion of light from the sun to electricity- denotes the largest single untapped low-carbon energy source for our planet. Therefore it is important to train our students developing their understanding in not only the existing photovoltaic (PV) technologies but also to explore the next generation solar cell technologies. After the successful commercialization of 1st generation (silicon wafer based) solar cells in the mid of twentieth century, thin film technologies were introduced as cost effective alternatives achieving pretty comparable efficiencies. Since last two decades researchers instigated thinking about how this novel technology might grow with time. Nonetheless it was realized that post-2020, there would be pressure on PV industry to upsurge performance beyond this level. As a matter of fact, a developed PV industry would drive towards ever-increasing power conversion efficiency further reducing the cost of the solar cells! Hence another generation of solar cells came into existence with high potential of efficiency enhancement beyond the one achieved by existing technologies and several innovative concepts are being introduced today. Keeping in mind the demands of PV industry and the everyday developing solar cell technologies, there arise a need for the development of a new course on next-generation solar cells.

Course Objectives

2. In this course, we will develop a vital understanding of how the innovative nanostructured solar cells convert light to electricity, how these solar cells are fabricated, how the device performance is evaluated, and how the PV technologies are being developed. After an overview of potential of solar light conversion on earth, as compared to other renewable technologies and the fossil fuels, a brief outline will be included for the existing PV technologies. The students will acquire knowledge on the processes that take place during solar cell operation: light absorption, carrier thermalization, charge transport, charge separation, charge recombination and charge

1

extraction. Moreover each such process will be elaborated for a variety of emerging solar cell technologies based on innovative nanostructured/photoactive materials. Using the knowledge of nanomaterials physics, charge generation mechanism and transport kinetics, and the cell structure engineering, the students will be able to not only fabricate but also to assess and critique the drawbacks and potential of the modern photovoltaic technologies, including multi-junction/tandem solar cells, bulk heterojunctions (organic), Graetzel cells, nanostructure-based, hybrid perovskite, and other third generation PVs. Post-Grad students, and also the Ph.D scholars, can apply this knowledge towards a solar energy project of their choice. Other activities may be incorporated into the course, including lab scale training on solar cell fabrication or a tour of some PV-related institute/ industry.

Course Outcomes

3. Understand the working mechanisms and advanced concepts of next generation photovoltaics. Acquire the knowledge of several fabrication and characterization techniques to be employed for nanostructured/photoactive solar energy materials. Design and fabricate the new generation solar cells with low cost and long-term stability. Employ the IV and JV characterizations on these light harvesting devices.

No.		Topics	Book	CHs
1.	a. Sola	r Energy Resource and the Solar Cells	SW & MG	2
	(1)	Historical perspective		
	(2)	Overview of world energy challenges and		
		competing energy technologies		
	(3)	Resources and availability: Options for		
		capturing solar energy		
	(4)	The sun, blackbody radiation, atmospheric		
		absorption, solar spectra (AM0, AM1,		
		AM1.5)		

Detailed Contents with suggested contact hours

	(5)	Core concepts of a Solar Cell:			
		semiconductors, P-N junction, photo-diode.			
2.	b. Exi	sting Photovoltaic Technologies		PW	4
	(1)	Crystalline Si Solar cells and Technologies:			
		Monocrystalline, Polycrystalline			
	(2)	Thin Film Solar Cells and Technologies:			
		Amorphous silicon, Cadmium Telluride,			
		CIGS.			
	(3)	Need of Advanced Generation Solar Cells			
3.	с. Ne	w Concepts in Photovoltaics: Developing	TW	, MG &	3
	Тес	chnologies	ļ	٩AA	
	(1)	High Performance			
	(2)	Low cost			
	(3)	New Market Possibilities			
4.	d. Na	nostructured Materials for Solar Cells:	TS	8 & EL	9
	Comm	on Characteristics			
	(1)	Quantum Effects			
	(2)	Concept of Excitons			
	(3)	Bandgap Tuning			
	(4)	Photoluminescence effects			
	Synthe	Synthesis Techniques			
	(1)	Wet-Chemical			
	(2)	CVDs			
	(3)	PVDs			
	(4)	Other Nano Powder based Techniques			
5.	e. Ex	oloring Light Harvesting Properties of		TS	4
	Na	nostructured/Photoactive Materials using vari	ous		

	Char	acterization Techniques:			
		Optical			
	(1)	•			
	(2)	Structural			
	(3)	Morphological			
	(4)	Electrical			
	(5)	Electrochemical			
6.	f. Fabri	ication and Characterization of Emerging PVs	MG	18	
	(1)	Organic Photovoltaics (OPVs)			
	(2)	Hybrid Photovoltaics			
	(3)	DSSCs			
	(4)	Quantum Dot Solar cells (QDSCs)			
	(5)	Perovskite Solar Cells (PSCs)			
	(6)	and others			
7.	Laborat	ory Demonstrations/Visits of:		3	
	g. Few	of the synthesis and characterization techniques			
	employed for nanostructured/photoactive materials				
	Fabri	cation of some selected solar cell types			
8.	h. Econ	omic Breakdown of Technology:	MG &	2	
	(7)	Materials, manufacturing, installation.	AAA		
	(8)	Life cycle analysis,			
	(9)	Energy pay-back time,			
	(10)	Growth of PV market,			
	45				
Rec	Recommended Reading (including Textbooks and Reference books).				

1	Physics of Solar Cells: From Principles to New Concepts (2007)	Peter Wurfel	PW
2	Nanostructured Materials: Electrochemical Energy Production and Storage (2009)	Edson Roberto Leite	EL
3	Nanostructured Materials for Solar Energy Conversion (2006)	Tetsuo Soga	TS

4	Optical Properties and Spectroscopy of	Jin Zhng Zhang	JZ
	Nanomaterials (2009)		
5	Dye-Sensitized Solar Cells (2010)	К.	KK
		Kalyanasundaram	
6	Third Generation Photovoltaics: Advanced	Martin A. Green	MG
	Solar Energy Conversion (2006)		
7	Next Generation of Photovoltaics: New	Ana Bel´en	AAA
	Concepts (2012)	Crist´obal L´opez	
		Antonio Mart´ı	
		Vega Antonio	
		Luque L´opez	
8	Applied Photovoltaics (2007)	S.R. Wenham	SW
		M.A. Green	
		M.E. Watt	
		R. Corkish	